### M. Hryc

# Pomiar współczynnika dyfuzji i średnicy hydrodynamicznej

#### 3lutego2025

#### Spis treści

| 1. | Opis metody                                     | 1  |
|----|-------------------------------------------------|----|
| 2. | Badane próbki                                   | 1  |
| 3. | Przykładowy ślad intenstywności                 | 2  |
| 4. | HullRad                                         | 2  |
| 5. | Dyskusja                                        | 2  |
| 6. | Wykresy z dopasowaniem do krzywej autokorelacji | 16 |
| 7. | Tabela wartości                                 | 16 |

#### 1. Opis metody

Metoda DLS (ang. Dynamic Light Scattering) służy do szacowania rozmiaru cząsteczek zawieszonych w roztworze (w tym przypadku białek). Ponieważ cząsteczki rozpuszczalnika w temperaturze powyżej zera absolutnego posiadają eneregię kinetyczną, stale zderzają się ze sobą oraz z zawieszonymi w roztworze cząsteczkami badanego białka. Skutkiem tego jest obserwowany ciągły ruch cząsteczek w losowych kierunkach (ruch Browna). Prędkość tego ruchu jest zależna od rozmiaru cząsteczki zgodnie z równaniem Stokesa-Einsteina:

$$D = \frac{k_B T}{6\pi\eta D_h}$$

gdzie: D — współczynnik dyfuzji  $k_B$  — stała Boltzmana T — temperatura w Kelvinach  $\eta$  — lepkość roztworu  $D_h$  — średnica hydrodynamiczna (średnica twardej kuli, której współczynnik dyfuzji wynosi D)

W trakcie pomiaru światło lasera przechodzi przez próbkę i ulega rozproszeniu. Detektor umieszczony pod określonym kątem (np. 175°) mierzy zmianę intensywności światła w czasie. Ze śladu intensywności wyliczana jest funkcja autokorelacji porównująca różnicę między wartościami zmierzonej intensywności między czasem t a  $t + \tau$ . Na podstawie wykresu wartości funkcji autokorelacji względem wartości  $\tau$  uzyskujemy informację o czasie w jakim przemieszcza się cząsteczka — a ponieważ jest to zależne od jej rozmiaru — możemy oszacować jej rozmiar (średnicę hydrodynamiczną).

#### 2. Badane próbki

1. BSA C w  $H_2O$ 2. BSA C w PBS 3. BSC L w  $H_2O$ 4. BSA L w PBS 5. dHSA6 6. GFP w PBS



Rysunek 1: Przykładowy ślad intensywności.

7. HSA w  $H_2O$ 8. HSA w PBS 9. Lizozym w  $H_2O$ 10. Lizozym w PBS 11. mHSA 12. tHSA 13. tri-HSA w PBS

## 3. Przykładowy ślad intenstywności

## 4. HullRad

Numery akcesyjne PDB: Lizozym 194L, HSA 1AO6, BSA 8WDD.

| białko  | $2 \cdot R_{Translation}(nm)$ | $D_t(\frac{\mu m^2}{s})$ |
|---------|-------------------------------|--------------------------|
| BSA     | 9.092                         | 47.2                     |
| HSA     | 8.986                         | 47.7                     |
| Lizozym | 3.682                         | 116                      |

### 5. Dyskusja

Na podstawie wyników można zauważyć, że pomiary prowadzone w  $H_2O$ cechuje wysoka (ponad 25 %) polidyspersyjność, co świadczy o mniejszej pre-



Rysunek 2: BSA C w  $H_2O$ 

cyzji pomiaru. Pomiary GFP i tri-HSA cechują się wysoką polidyspersyjnością pomimo prrowadzenia pomiaru w PBS, ale ponieważ analiza tych białek nie została przeprowadzona w  $H_2$  nie można stwierdzić czy w ich wypadku także spowodowałoby to wyższą polidyspersyjność.

Błąd dopasowania dla wszystkich pomiarów jest bardzo mały, w najgorszym wypadku wynosi $8.592\cdot 10^{-3}.$ 

Wartości średnicy hydrodynamicznej i współczynnika dyfuzji obliczone przez HullRad są zbliżone do wartości zmierzonych dla BSA, HSA i Lizozymu w PBS.

Dodatkowo zmierzono długość i szerokość struktur białek wykorzystanych do analizy HullRad (długość jest podana w Angstremach). Pozwala to zauważyć, że DLS pozwala dosyć dobrze oszacować rozmiar białka. Na pewno jest to ułatwione przez fakt, że wszystkie badane białka miały mniej więcej kolisty kształt.



Rysunek 3: BSA C W PBS



Rysunek 4: BSA L w $H_2O$ 



Rysunek 5: BSA L w PBS



Rysunek 6: dHSA 6



Rysunek 7: GFP w PBS



Rysunek 8: HSA w  $H_2O$ 



Rysunek 9: HSA w PBS



Rysunek 10: Lizozym w  ${\cal H}_2 {\cal O}$ 



Rysunek 11: Lizozym w PBS



Rysunek 12: mHSA



Rysunek 13: tHSA



Rysunek 14: Tri-HSA w PBS



Rysunek 15: BSA, długość

## 6. Wykresy z dopasowaniem do krzywej autokorelacji

| próba            | $D(\frac{\mu m^2}{s})$ | $D_h(nm)$ | % polidyspersyjności | błąd dopasowania       |
|------------------|------------------------|-----------|----------------------|------------------------|
| BSA C w $H_2O$   | 193.608                | 2.403     | 26.431               | $6.925 \cdot 10^{-05}$ |
| BSA C w PBS      | 59.368                 | 7.723     | 7.915                | $2.988 \cdot 10^{-05}$ |
| BSC L w $H_2O$   | 116.200                | 4.004     | 25.685               | $4.261 \cdot 10^{-4}$  |
| BSA L w PBS      | 54.959                 | 8.342     | 9.677                | $1.075 \cdot 10^{-05}$ |
| dHSA6            | 46.599                 | 9.053     | 1.252                | $2.983 \cdot 10^{-06}$ |
| $GFP \le PBS$    | 18.503                 | 24.779    | 28.181               | $5.868 \cdot 10^{-4}$  |
| HSA w $H_2O$     | 118.305                | 3.933     | 26.118               | $7.263 \cdot 10^{-5}$  |
| HSA w PBS        | 57.471                 | 7.978     | 9.201                | $1.183 \cdot 10^{-05}$ |
| Lizozym w $H_2O$ | 7.880                  | 59.046    | 27.934               | $9.512 \cdot 10^{-4}$  |
| Lizozym w PBS    | 105.907                | 4.329     | 11.087               | $2.475 \cdot 10^{-5}$  |
| mHSA             | 61.059                 | 6.909     | 4.784                | $4.446 \cdot 10^{-6}$  |
| tHSA             | 34.199                 | 12.335    | 13.562               | $1.756 \cdot 10^{-5}$  |
| tri-HSA w PBS    | 3.080                  | 148.849   | 30.359               | $8.592 \cdot 10^{-3}$  |

## 7. Tabela wartości



Rysunek 16: BSA, szerokość



Rysunek 17: HSA, długość



Rysunek 18: HSA, szerokość



Rysunek 19: Lizozym, długość



Rysunek 20: Lizozym, szerokość