MHryc

PDR AP

TCDI

Foldseek &

JniProt

Advanced PDB searc

Final remarks

ABC transporter structural data PDB querying

MHryc

MHryc

PDB API

TCDL

Foldmaso

UniPro

Advanced PDB searce

Final remarks

PDB API

MHryc

PDB API

TCDI

Foldseek Foldmas

UniProt

Advanced PDB searc

Final remark

problem

I couldn't find a structure search attribute that would allow for querying by domains or transporter classification and struct_keywords.pdbx_keywords are not standardized.

abc_query.json

```
"parameters": {
    "attribute": "struct_keywords.text",
    "operator": "contains_phrase",
    "value": "ABC transporter"
"request options": {
  "results content type": [
    "experimental"
 ],
"return_type": "entry"
885 results
```

MHryc

PDB AP

TCDb

Foldmasor

UniPro

Advanced PDB searc

Final remarks

TCDb

MHryc

PDB AP

ТСDЬ

Foldma

UniPro

PDB searce

Final remark

ABC classification

Classifies ABCs into ABC1, ABC2 and ABC3 Superfamilies, contains structural data but doesn't allow to easily parse and download larger quantities.

Figure 1: TCDb structural data

MHryc

PDR AP

TCD

Foldseek & Foldmason

JniPro

Advanced PDB searce

Final remarks

Foldseek & Foldmason

MHryc

PDR AP

TCDI

Foldseek &

Ha:Dask

01111 101

PDB searc

Final remark

Foldseek

Using Foldseek Search Server on whole structures seems to yield too specific results but also some *noise*, eg. human NBD1 of CFTR

MHryc

PDR AP

TCDI

Foldseek & Foldmason

IniDro

Advanced

Final remark

Clustering with Foldmason

Run with 558 structures.

MHryc

PDB AP

TCD

Foldseek & Foldmason

UniProt

PDB searce

Final remark

ABC type representants

Type	representant
Type I	2R6G
Type II	4FI3
Type III	4HUQ
Type IV	5TV4
Type V	6AN7
Type VI	5X5Y
Type VII	5LJ7

[https://doi.org/10.1146/annurev-biochem-011520-105201]

MHryc

DDD AD

TCDI

Foldseek & Foldmason

Tolumas

Advanced PDB sear

Final remark

TMD extraction

Figure 3: Type I, TMD in red

MHryc

PDB AF

TCDI

Foldseek & Foldmason

JniPro

Advanced PDB searce

Final remark

Searching based on extracted TMDs

Yields ABCs, but also ferroporins, CLC transporters, ATPases, GLUTs etc. because they share structural similarity, eg.

CFTR is a Cl- channel that bears structural and sequence homology to ABC transporters [https://doi.org/10.1016/j.bbamem.2010.02.022]

MHryc

PDR AP

TCDb

Foldmaso

UniProt

Advanced PDB searc

Final remarks

UniProt

MHryc

PDR AP

TCDI

Foldmass

UniProt

OIIIFIC

Advanced PDB searc

Final remark

query

"abc transporter" AND (structure_3d:true)

845 records, 347 reviewed (SwissProt) with 1832 PDB accession numbers after deduplication.

MHryc

PDB AP

TCDF

Foldseek Foldmas

UniProt

UniProf

PDB searc

Final remark

statistics

top 5 species (record count)

- 1 86 Escherichia coli
- 2 35 Homo sapiens
- 3 26 Bacillus subtilis
- 4 21 Mycobacterium tuberculosis
- **5** 16 Saccharomyces cerevisiae

top 5 species (not exact PDB ID count)

- 957 Escherichia coli
- 2 305 Homo sapiens
- 80 Bacillus subtilis
- 4 77 Saccharomyces cerevisiae
- 5 74 Salmonella typhimurium

MHryc

PDR AP

TCDb

Foldmaso

UniPro

Advanced PDB search

Final remarks

Advanced PDB search

MHryc

PDR AF

TCDI

Foldseek Foldmas


UniProt

Advanced

PDB search

Final remark

query by NBD signature motif (LSGGQ)

Structure counts

574 polymer entities, but only 203 representatives if grouped by 100% sequence identity.

MHryc

PDR AP

ICDB

Foldmaso

UniPro

Advanced PDB search

Final remarks

Final remarks

Foldseek

UIIIFIUL

PDB searce

Final remarks

easiets to hardest (?)

- create a complete list of family or exact transporter names (eg. from HGNC, or TCDb)
- 2 find overlap between obtained by different methods
- group structures by presence of ATP/ADP or other molecules
- 4 remove incomplete structures (subunits, "associating proteins", ribosome bound subunits)
- 5 group structures by ABC type
- 6 determine transporter state (when not stated by authors)